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SUMMARY

The Schlichting method for the computation of the laminar boundary
layer states that on an impervious surface the shape of the velocity pro-
file is determined by the local effective pressure gradient; this gra-
dient is directly proportional to the product of the actual pressure gra-
dient and the square of the boundary-layer thickness. It is apparent,
therefore, that in a region of falling pressure the Schlichting method
predicts that an increase in boundary-layer thickness increases the
effective pressure gradient and thus results in a more convex veloclty
profile. Because the increase in convexity is known to imply an increase
in the critical boundary-layer Reynolds number, it would appear that an
increase in boundary-layer thickness could increase the local critical
Reynolds number more than the local boundary-layer Reynolds number.

In order to investigate this possibility, computations have been
made by combining the Schlichting method with the Lin method for the
calculation of the critical Reynolds number of a velocity profile. The
computations indicate that in a region of falling pressure on an Imper-
vious surface an increase in boundary-layer thickness can cause the
velocity profile shape to be changed enough by the increase in effective
pressure gradient so that the ratio of the local critical Reynolds num-
ber to the local boundary-layer Reynolds number is increased. It thus
appears that the local stability of the boundary layer can be increased
by a local increase in boundary-lsyer thickness. The computations also
indicate that similar effects occur when there is flow through the sur-
face; in this case the results depend on the effective flow through the
surface as well as on the effective pressure gradient.

These calculations suggest that an increase in boundary-layer thick-
ness can decrease the disturbing effect of roughness particles without a
decrease in stability. This conclusion is implied by the result that an
increase in boundary-layer thickness reduces the velocity at a fixed
distance from the surface more than the change in velocity profile
increases the velocity. One method of increasing the boundary-layer
thickness, namely, blowing near the stagnation point, has been investi-
gated theoretically and seems to have limited potentlalities because the
blowing produces a significant increase in boundary-layer thickness only
over the foremost portion of the airfoil.
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INTRODUCTION

A number of years ago investligators noticed that a falling pres-
sure in the direction of flow was able to increase the extent of laminar
flow on a surface and thereby decrease its friction drag (references 1,
2, and 3). This observation was made the basis for the design of air-
folls that are able to have much smaller drag coefficients than previ-
ously known airfoils. In order to obtain the small drag coefficients,
however, 1t 1s necessary that—the airfoll surface be smooth and free of
waves, The requirement of"s smooth and wave-free surface has, to the
present, prevented the consistent attaimment in flight of wing drag
coefficients as small as those obtained in wind-tunnel tests.

The experimental finding that under proper conditions a falling
pressure in the direction of flow causes increases in the extent of
laminar flow was given a theoretical basis by the work of reference k.
The theoretical work showed that a pressure drop increases the convexity
of velocity profiles and thereby increases their critical Reynolds num-
bers, The critical Reynolds number 1s the Reynolds number below which
transition to turbulent flow cannot-be caused by the growth of small
departures from the mean velocity inside the boundary layer as the fluid
moves downstream. To form the Reynolds number the velocity at the outer
edge of the boundary layer is used; the length is a boundary-layer
thickness. .

Another important theoretical finding (reference 5) was that a flow
of fluid.into thesurface increases the convexity of the velocity profile
and thereby increases its critical Reynolds number; an outflow was found
to decrease the critical Reynolds number. -Because the effects on the
critical Reynolds number are large for very small flow velocities through
the surface, the method of maintaining laminar flow by sucking fluid into
the airfoil through a porous surface appeared to have practical value.

In order to test the method, the work of reference 6 was done., Full-chord

laminar flow was observed up to a Reynolds humber of 20 X 106 and it was
concluded that larger Reynolds numbers would not limit the extent of lami-
nar flow if the surface were sufficiently smooth and free of waviness.

Another method for maintaining laminar flow was based on the experi-
mental observation that transition often seems to occur at a fairly defi-
nite value of the boundary-layer Reynolds number. Examples of the appli-
cation of this observation are references 7, 8, and 9 in which a number
of slots were placed along the airfoll surface and air drewn into the
interior in order to decrease the boundary-layer Reynolds number.

In tests of each of the three methods, namely, pressure drop, suc-
tion through a porous surface, and limitation of megnitude of boundary-
layer Reynolds number, it was found that, in-order to avoid early transi-
tion to turbulent flow, the surface has to be free of noticeable roughness
particles and other departures from smoothness. The work of reference 10
indicated that the roughness Reynolds number, formed from the height of-
the roughness particle and the velocity at—=a-distance from the surface
equal to the roughness helight with the particle absent; furnishes a

il
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measure of the disturbing effect of a particle. For a small effect, a
small roughness Reynolds number is necessary. All three methods for
keeping the boundary layer laminar, however, increase rather than
decrease the roughness Reynolds number of a particle.

In the Schlichting method (reference 11), the shape of the velo-
city profile on an impervious surface depends only on the kinematic
viscosity, on the local gradient of velocity at the outer edge of the
boundary layer, and on the local boundary-layer thickness. The combina-
tion of variables is such that an increase in boundary-layer thiclkness
increases the effect of velocity gradient; therefore, in a region of
falling pressure, an increase in boundary-layer thickness results in a
more convex velocity profile. Because the increase in convexity carries
with it an increase in the critical boundary-layer Reynolds number, the
possibility arises that an increase in boundary-layer thickness may
increase the local critical Reynolds number more than the local boundary-
layer Reynolds number is increased by the increase in thickness. There
is thus the possibility that an increase in boundary-layer thickness can
increase the stability of the boundary layer.

The purpose of the present work 1s therefore to investigate theo-
retically the effect of an increase in boundary-layer thickness on the
stability of the boundary layer. The analysis also includes an investi-
gation of the effect of an increase in boundary-layer thickness on the
roughness Reynolds number and of the ability of blowing at the stagna-
tion point to increase the boundary-layer thickness without making the o

boundary layer unstable.

SYMBOLS

a,b coefficients in expression for ¥

Ky

s "\ YL
CDP drag equivalent of power required for boundary-layer control
CDt sum of wake drag coefficient and CDP

j&w&

CQ=

Uoc

chord of airfoil

ol

CosC1sCo coefficients in expression for g -
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Ep efficiency of boundary-layer control system

Ep efficlency of aircraft propulsive system

Fl=l'—e—n
F2=1_eﬂ-sin%‘n (0< 1< 3) _

= e (7123) -
F function of y

g = éi = cp +C1K + c2K2
51

*
G=2’:-k<2+8—_ -;l
6

E height of roughness particle
H total pressure -
2 2 2
I = Vw RC_ _ fl _ kl
o U 5 dU . 2k _
dx dx E
X velocity-profile shape parameter - -
5 - -}.;o
p= ‘
=T 2 . . = A
PoUs ; . =
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D static pressure
P, free-stream static pressure
P power required for boundary-layer control
5 volume flow per unit time
PRI~
. = PoYq
° 2
Rg critical Reynolds number, velue of Ry at which a small
¢ ‘disturbance is neither damped nor amplified
Rg = &
v
RS*c critical Reynolds number, value of Rg* at which a small
disturbance is neither damped nor amplified
~
Rg* = 2V
v
uh
Ry roughness Reynolds number | ——
v
Tpe
Re airfoil Reynolds number |—
v
E velocity at outer edge of boundary layer
u velocity in direction of X
-4
Uo
U=
Uo

Ug free-stream velocity



Uy
Vv
'.‘F
W
Vw—-_—-
Uo
V=__l
Uo
v
v
.
Yo
x
X
X ==
C
AX
¥
y=%
T
z = 6R,
a
81
5*
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_ velocity at Y = h with roughness particle absent B

velocity through surface, positive outward

velocity normal to surface, positive outward

velocity in direction of §—axis, stagnation-point flow

distance along surface measured from stagnation point

Ancrement in x

distance normal to surface, positive outward

angle of attack

measure of boundary-layer thickness

[><]
displacement thickness <)F (l - %)d%)
0
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o]
) momentum thickness f E(l - E)dy>
o U U

=2 Rp2
k:.eh..d_U=_e_(_L£>_Zd_II_
v dax Be \u2 dx ax
) v,
ki = - 42— = - LRy = £1V2
v
5.2 ay
oL
dx
-5
M = - wol
v
m viscosity of fluid
v kinematic viscosity of fluid (W/p
Po free-stream density
< density of fluid
Tw surface shearing stress
1) function of ¥y
¥ nondimensional stream function <=“’F—_>
i«_ stream function
Subscripts:
8 stagnation point

w at surface

)

Uoc
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0 far behind wing
X gt station x
X+AX gt station x + Ax '—

Barred quantities are dimensional.

ANATLYSIS

Effect of an increase in boundary-layer thickness on the stability
of the laminar boundary layer.- The sgnalysis makes use of a modifica-
tion of Schlichting's method for the calculstion of laminar-boundary-
layer velocity profiles (reference 11). The modification consiets in
using the boundary-layer momentum thickness 6 as the reference length

instead of the length 51 used by Schlichting. The use of @ instead
of—87 eliminates two auxiliary parameters, A and A1, and makes the

extension of the Schlichting method to cases of uniformly distributed
blowing relatively simple. The modified Schlichting method 1s described
in appendix A,

From the definition of the critical Reynolds number (reference 12)
it follows that the boundary layer is unstable when the ratio of the
local critical Reynolds number to the local boundary-layer Reynolds

R

8
number E_E is less than unity, neutrally stable when §‘E = 1, and

v} Rp . . 1e
stable when E—E >1. In the present work the assumption is made that

e
Rg
the numerical value of-the ratio E_Q at g distance x from the
2]

stagnation point—is e measure of the stability of the boundary layer
at that value of x. It is assumed that the boundary layer becomes

Rg
more stable as the ratio —<£ increases. (In this analysis it is
Rg .

more convenient to use Rec and Ry than Rs* and Ra*c.)

A conclusion of reference 13 is that-the critical Reynolds number
Rgc depends only on the shape of the velocity profile, In the

Schlichting method all velocity profiles are g single-parameter femily.
Therefore to each value of- K, the velocity-profile parameter, there
corresponds a value of Rgc; that is, '

Rg, = Rg, (K) (1)
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The function RGC(K) was calculated by Lin's rapid method (reference 12)
and is shown in figure 1. (See also reference 6.)

The possibility that an increase in © can increase K enough
to cause a larger incregse in Rec than in Rg 1is now investigated.

The investigation is made for the general case vy % 0; w =0 Iis
then a speclal case.

Rg
In order to determine the effect on ﬁgg at a specific value of x -

_ - = d —
of an increase in 6 at that value of x with v, U, _E, and vy

fixed <£c, g, %g, and vy fixed), it is convenilent to obtain ﬁgﬁ as
Vi R .
g function of the parameters K and ¥ _C. The shape parameter K 1is
o U :
ax

a function of the two quantities k and k; defined by:

—2—
k-2
v dx
and
kl:-l -
v

These definitions can slso be written as:

2 R

2]
(o)

1l 4u
K = moe. = GYU
T P ax (2)
and
v
k) = - = Ry o (3)
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When the definitions for k and k; are substituted into the
following equation connecting X, k, and 'k; (equation (A8),
appendix A): .

(K + 1) - fk1 - k=0 (L)
the result—is
Rg? 1 dU Vi
2 L& _p MR, - g2(K+1)=0 (5)
Re U2 ax U

The quantities f and g where

f:-T.W— = _
. W
and
]
g:_— _
81

are functions of K alone. Equation (5) 1s solved for Rg; the result——

is
JfE+ /1 + 2g2(K + 1) (6)

where . -
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It is noted that the parameter J 1s independent of Ry and therefore
does not change when 6 at a fixed value of x 1is changed.

The sign of the radical in equation (6) is determined by the fact
that Rg 1s always positive. The sign is given in the following table:

J K+ 1 Sign
V,
¥ >0
U
>0 20 +
>0 <o +
<0 <0 -
V-
- <0
U
’_-—.
>0 >0 -
<0 <0 +
<0 20 *

By combining equations (1) and (6) the following result is obtained:

RQ RG(K)
- S ' = r (v # 0) (1)
2 R 2g=(K + 1
_— Jfli-\ﬂ+-g2—(——)
Jf2
Rec Vy
Equation (7) fixes g~ When —, J, and K are known. The variation
8 6]
R
6
of with K for constant values of J 1is shown in figure 2.
Vw
— R
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(The curves of fig. 2 have been numbered; the value of J to which the
numbers correspond may be obtained from table I.)

Usually the girfoil does not have a porous surface; in this case
vy = O and equation (7) is replaced by

T 4o (8)

Equation (8) can be obtained either by putting w, = 0 in equation (5),
gsolving for Rg, and combining with equation (1), or by taking the limit -

‘Rg_ [ueR

as Vy—>0 in equation (7). The function —£ URe is shown in
v Rg i |aU
dx

figure 3.

The quantity under the square-root sign in equation (6) must be
positive; thus,

2g2 (K + 1) >0
— 5 =

1+
Jf

When the equality sign is used, the result is the curve defined by the
equation

R K
Oc = - _3235_2__, - (9)
Yup, 282K+ 1)
U f
Rec
and shown by dashed lines in figures 2(a) and 2(b). A curve of

for a fixed value of J cannot cross the dashed cutrve.
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Although the relation between K, k, and k; (equation (4) and
fig. 4) is used in obtaining equations (7) and (8), not all combinations
of values are allowable because some correspond to a physically unresali-
zable behavior of the boundary layer. Thus, in order to avoid the con-

tradiction that, at a fixed value of k; and with k negative %g <:q>,
an increase in k a decrease in the magnitude of %% for %% <:O> can

result in separation, only the portion of the curves for X, k, and k;

ok
shown as a dashed line in figure 4(a), passes through the points at which

in figure 4(a) for which (§£> 2 0 1is used. The boundary curve,
ky

(%%) changes from o to -w. Its equation is obtained by applying the
ky

condition

to the expression,

§§> - L - 10
(ak iy dg2(X + 1) (20)
af aK K
-k
dx af
dK

obtained from equation (k). The subscript on the partial derivative
denotes the quantity held constant during the differentiation. From _

equation (10), the fact that g—l-f( >0, and the inequality for (% s
ky

the result is obtained that:

dg2(K + 1)

ki < gk
1 = ar _ ~
dK
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On the boundary curve the equality sign applies. When the condition

dg?(X + 1)
aK

darf - -
dK

k1 =

is used with equation (4), the equation of the boundary curve is found
to be ' ' '

dg®(K + 1)

k=g2(K+1)-f—-Z§_—_ (11)

dk

All physically meaningful values of k and "K 1lie to the right of the
dashed boundary curve (fig. 4(a)). For k; = 0 (that is, v, = 0) only
values of K greater than -1.913 are allowable.

Re . - -
in figure 2 thus satisfy the conditions that

The curveas of. v
—KRQ
U

and
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Re. [U°R,
The curve of — (fig. 3) satisfies the conditions that:
Rg au
dx

Rg >0 and (-5-12) > o.
Ok/y
1

R
- 6
Before the effect of an increase in & on the ratio E-S can be
o]

found from figures 2 and 3, the effect of the increase in 8 on K
oK

must be found. The sign of the derivative =—— 1is thus required.

3R

Only @ varies; therefore, Rg varies, but R, U, %g, and v, do

not. From equation (4) K = K(k,k;); therefore,

K _ a_K) dk +(BK) Oky
3BRg  \3k/x, Ro  \dk; /. 3Ry

where the subscripts denote the quantity held constant. Now from
equation (2)

Rg QE_ = 2k

and from equation (3)
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Therefore,

Rg Ry 2k<ak " + kl<5k1>k (12)

From equation (4) there follows

\Ok/g, dg?(K + 1) _4f .

and - : -

When these expressions for (§E> and §§_ are substituted
ok k1 akl k

into equation (12), the result is

3K 2g2(K + 1) - X9f
R (13)
°Rg dg=(K+1)  af -
K 1l &«

The curves in figure 2 are identified by the value of the param-

eter J. (See table I.) Therefore, in order to find the sign of %%;
8
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for any curve in figure 2, 1t 1s necessary to introduce the parameter J

%

into equation (13) for Rg = Equation (6) is used to obtain:
6

. 2g2(K + 1)

k1=-‘—rER9=—Jflt&[l
U 122

Equation (13) thus becomes:

2
2g2(K + 1) + f2Jlt\/1+Qi-(-IH—l-)-
oK Jf2

% Ry (1)

) 2
E‘M+gﬂ'lt‘ﬁ+m
ax e

-

The quantity Rg S—Il:— is plotted against K for constant values
o ;

of J in figure 5(a) for v, >0 and in figure 5(b) for w, < 0. The

curves of Rg g—g— against K also satisfy the conditions that
6
Ry > 0

. 2g2(K + 1)
J£e

1 >0

and
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. 2g°(K + 1) _
When 1 + — = 0, the numerator of equation (14) is zero;
Jf =
oK
aRe
The curve of Rg %%— against K for v, = 0, calculated from
g

equation (14) with J = O, is shown in figure 6. This curve satisfies

the conditions that Rg > 0 and <§K> 2 0.
ok kl_

Now consider figures 3 and 6 which are for vy = 0. It is apparent
from figure 6 that when vy = O an increase in Ry decreases K if

K <-1, does not change K if K is initially equal to -1, and
increases K if K > -1. Therefore an Increase in U, and thus in Rg,

Rg
causes ﬁ;ﬁ to increase 1f—K > -0.925 (fig. 3). Consequently, an
increase in boundary-layer thickness incresses rather than decreases
the stability of the boundary layer if K > -0.925. When X < -0.925
a small increase in boundary-layer thickness decreases the stability
of the boundary layer; conversely, when K < -0.925 & small decrease
In thickness increases the stabllity.

For K > -1 and wvy = 0, the pressure falls along the surface in
the dlrection of flow; when K < -1 and wy; = 0, the pressure rises in
the direction of flow (equation (4)). The values K= -1 and v, =0
correspond to a flow with zero pressure gradient.

Figures 2(a) and 5(a) (for v, > 0) indicate that when Rg %%— <0
8
(curves 6 to 13 inclusive) an increase in Ry decreases the stability.

When Rg g%— >0 (curves 1 to 5 inclusive), the stability may either
e

be increased or decreased by an increase in Ry depending on the values
of K and J and the magnitude of the increase in Rg,

For vy <O the conclusion 1s similar to that for wvy > O; namely,
when Rg %%— <0 (curves 9 to 11, figs. 2(b) and 5(b)) an increase in
e

Rg decreases the stability. When Rg %%— >0 (curves 1 to 7 inclusive,
8
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figs. 2(b) and 5(b)) the stability may either be increased or decreased
by an increase in Ry, depending on the values of K and J and the
magnitude of the increase in Rg. For curve 8 the stability is decreased
by an increase in Rg.

The computations thus indicate that under suitable conditions an
increase in boundary-layer thickness cen increase the stability of the
laminar boundary layer.

Effect of an increase in boundary-layer thickness on the roughness
Reynolds number Ry.- Because the disturbing effect of a roughness

particle is decreased when its Reynolds number Ry 1is decreased suffi-

ciently (reference 10), it is desirable to examine the effect on Ry of

an increase in 6, that is, an increase in Rg with Re, U, %%, and vy

fixed. Although an increase in boundary-layer thickness places the rough-
ness particle at a smaller fraction of the boundery-layer thickness from
the surface and consequently in a region of smaller velocity, the
increase in thickness also changes the velocity profile and therefore

the velocity at a fixed distance from the surface. Whether the increase
in velocity associated with the change in velocity profile can be

greater than the decrease in velocity caused by the increase in the
boundary-layer thickness is now investigated.

The definition of Ry 1s
(15)

Although the assumption of reference 10 that

ah=i{§§>
oY/

becomes less accurate as the curvature of the velocity profile increases,
it can be shown that this assumption overestimates the change in veloc-
ity caused by the change in velocity profile. The assumption 1s there-
fore retained in the present analysis. Therefore, equation (15) becomes

2 aﬁ)
h{=—
Re — (B?’w _
h = —

2%
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but from reference 1l ——

Therefore,
2% £(x)
Ry = —
e v
or
n2R.202 -
Ry = -y £(K) (16)
e

Because f(K) changes with Rg, it—is not obvious that an increase
in Rg always decreases Rp. The change in Ry, caused by a change in
Rg alone, really & alone, is given by:

ORp 2p2p2|2(K) , 1 ar(x)

— =nh ol LA

SRg -R;= Be & 2R

or .

When equation (13) for Ry —Z-II:— is used, the result is:
]
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dgng + 1)

dx , 282K + 1)
£

Po T df/a (17)
Rn 3Rg ag2(K + 1)
dK
-k _
ar/ax

Rg OR
The partial derivative EQ Sﬁg 1s shown in figure T as a function of K
h Ofg
SR

for four values of kl. The partial derivative B is always negative
Rg

because the numerator of equation (17) is negative for all values of X

and the denomingtor is positive for all values of XK. Thaet the denomi-

nator is positive follows from the condition that (g—i) 2 0; this
k

1
requires that:

dge(X + 1)
< 49K

ar
K

ky

Therefore, an increase in Ry always decreases Rj; that 1s, an

Increase in boundary-layer thickness reduces the velocity at a fixed

distance from the surface more than the change in velocity profile

increases the velocity. Consequently, a sufficient increase in boundary-

layer thickness always decreases the disturbing effect of roughness L

particles.

Effect of an increase in boundary-layer thickness on the stability
of the boundary layer of two typilcal airfoils.- The computations thus
indicate that a sufficient increase in boundary-layer thickness can
decrease the disturbing effect of roughness particles and that under
sultable conditions an increase in boundary-layer thickness can increase
the stability of the laminar boundary layer. An equivalent statement of

toc
Ry, Ry
these two results 1s that —— 1is always negative and that can
dRg dRg

be positive.
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In order to determine whether typical airfoils with neither suc-
Roe
tion nor blowing have regions in which —55@:_> O, that is, regions in
6
which K > -0.925 _(fig. 3), the modified Schlichting method was used
to calculate the distribution of K along X for the NACA 64A010 and
NACA 6h2AOl5 alrfoil sections (reference 1%) at zero angle of attack
(figs. 8(a) and 9(a)). The distribution of K along x for v, =0
at all values of X 1s independent of Rc. TFor the NACA 6L4AO10 airfoil
1

section only the boundary layer over the forward 25 percent of the air-
Rec 8¢
. o : 3 —<
foil has € >0. TFor the NACA 64pA015 airfoil, however, Ro_ 5o
> s
for the forward 22%mpercent of the surface. _ The region of ® >o
R
6

is greater for the NACA 64,A015 airfoil section than for the NACA 64A010
girfoll section because the NACA 6h2AOl5 airfoil section has larger

values of %Q over 1ts forward portion than the NACA 64AO10 section.
bl

(Compare figs. 10 and 11.)

It is to be noted that figures 3 and 6 indicate that by a suffi-
cient increase in boundary-layer thickness the boundary layer over the
forward portions of both the NACA 64A010 and the NACA 642A015 airfoil

sections cen be made stable. This conclusion follows from the result -

that 2% >0 for K >-1 (fig. 6) and the result that
6

for K >-0.925 (fig. 3). A sufficient increase in Ry (in ) can

Rg U%R.

therefore make E—E equel unity unless c
0

is very large. TFor

dx
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exsmple, if the value of 6 at x = 0.35 on the NACA 64A010 airfoil
at Re = 107 1is multiplied by 3.45, the value of Ry is increased

R
from 1221 to 4208 and the value of R& is increased from 0.239 to 1.0.

du

When il ~—— = o, In this case, the flat-

plate flow, an increase in Ry can only make the boundary layer more
unstable.

Effect of blowing at the stagnation point.- The analysis has shown
that in a region of falling pressure on an airfoil having the usual type
of surface (vw = 0) the disturbing effect of roughness particles can be
decressed and the stability of the boundary layer increased by an
increase in boundary-layer thickness. This result suggests that an
effort be made to find a method for increasing the boundary-layer thick-
ness without causing transition. The second part of the analysis inves-
tigates such a method, namely, blowing in the region of the stagnation
point.

The work of reference 15 (see also appendix B) has shown that even
for large blowlng velocities the velocity profile in a stagnation-point

flow, a flow in which U = (%g) X, does not have an inflection point
s

for y >0. In fact, as v, becomes very large and positive (blowing)

the velocity profile approaches the sine profile:

= sin(—z- g-g-)
Vw dx

L
U
which has an inflection point at y = 0. The value of Rec for this

limiting velocity profile is 228 (appendix B). The value of Rg, at

the stagnation point is therefore always greater than or equal to 228.
At the stagnation point, however, Rg = 0. Therefore, Rec is there

always greater than Rg with the result that blowing at and near the

stagnation point can e used to thicken the boundary layer without
making it immedlately unstable.
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It is shown in appendix C that the Von Ké;méh momentum equation
upon which the Schlichting method is based is vallid for a stagnatlon-
polnt flow even when there are large veloclties through the surface.
The Schlichting method can therefore be used to calculate the develop-
ment of the boundary layer near the stagnation point even when there
are large velocities through the surface.

As a result, blowing in the region of the stagnation point was
investigated for both the NACA 64AO1O end the NACA 64oA015 airfoil

sections st o = 0° and Re = 107. The independent parameter was the
quantity k which was given the values 0.709 and T7.09; these values
are, respectively, 10 and 100 times the value of k at the stagnation
point without blowing. Because

<||ﬁ§
2112

the factors 10 and 100 mean that the value of © at—the stagnation

point is, respectively, JEB and 10 times the value of 6 for zero
blowing. The values of k; and K are obtgined from figure 12 and

the chosen value of k. The magnitude of (Vw)s is obtained from
figure 12 and the definition

R
Co = | -Vy =
au J

dx

The behavior of the boundary layer 1s then computed by the modified
Schlichting method (appendix A).

At R, =107, a = 0° and v, = O everywhere, the Reynolds nmum-
ber Rg becomes larger than the critical Reynolds number Rgc at—

x = 0.038 for the NACA 64A010 airfoil section (fig. 8(b)) and at

x = 0.060 for the NACA 645A015 airfoil section (fig. 9(b)). The
boundary layer on both airfoils is thus unstable for the greater part
of the reglon of falling pressure. When v, is made positive (blowing)

near the stagnation point, Ry 1s increased and Rec is decreased so0

nn

that Ry becomes equal to Rg, nearer the stagnation point than when
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Vi = 0. The values of Rg and Rg,» however, can then be made equal
to one another for some distance by decreasing vy along the surface

in the proper manner. When +w; reaches zero, control of the boundary

layer in the present examples ends. Of course the boundary layer can
be made neutrally stable to the trailing edge by allowing w,; to be
negative (suction) from the point where vy = 0 to the trailing edge
(see reference 6). In this case the boundary-layer thickness is first
increased by the blowing and then decreased by the suction. The net
effect depends on the value of x, the Reynolds number, the airfoil
velocity distribution, and the magnitude of the blowing velocity at
the stagnation point.

The distribution of v, necessary to make Rg = Rg.  is calculated

by using the relation between Ry and Z together with the require-
ment that Rg = Rg,. The relation between Rg and Z 1is

Rg = U/ZJR,
but
Rg = Rec
therefore

Rg, = UVZyR, (18)

In order to obtain the distribution of’ v, along x, the integration

process described in appendix A is used. This procedure is briefly as
follows: At x + Ax

(0) (dZ)
A =Zy + (=) AXx
X+AX X ax/

The value of Re(o) at x + Ax 1is then found from equation (18). The

C

value of K(O) is found by use of figure 1. The value of (0 is
X+AX +
(0) au

found from Zx+ and

) by use of the definition
A%/ x+Ax
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k
dx ol

(0) - x(0) 0 -
when KAy 2nd kXﬁAx are known, klifgx is found from equation (4)

(0)
and the functions g(K) and £(X). The value of (§§>
dx/x+Ax
found from equations (A2) and (A3). The iteration process described in
appendix A 1s then used to find the final value of all the quantilties
at x + Ax., The value of~ v, at x + Ax is found from the equation

is now

e =
VZ
where . __
fl = -VwV§;

The procedure is repeated to find wv,; at x + 2Ax and so forth.

When Vi becomes zero, the computation in the present examples is
carried on with ky = 0.

The results. of the computations for the NACA 64A010 airfoil are
shown in figure 8. The behavior of the curves in figure 8(a) confirms
the prediction of figure 6 that for v, = O an increase in
increases K if K > -1. The distributions of v, along x for
(vy)g = 0.0151 and for (Vw)s = 0.0515 are shown in figure 8(c) for

the region where vy > 0. The variatlon of Ry and Rg, for
(vw)g = 0, (wy)g = 0.0151, and (vy)g = 0.0515 is shown in fig-

ures 8(b), 8(d), and 8(e), respectively. In figure 8(f) is shown the
distribution of RGC/RG along x for the three distributions of wy

with x. The ratio of the boundary-layer thicknesses with blowing to
those without blowing is shown in figure 8(g).

There are two main results of the computations for the NACA 64AO010
alrfoll section., The first 1s that except for the region between
X = 0,038 and x = 0.06 (fig. 8(f)) the stability is decreased by
the blowing; for x > 0.06 the decrease is small., The second result"
is that, although there is a large increase in boundary-layer thickness
near the stagnation point (fig. 8(g)), the amount of the increase in
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thickness decreases rapidly until at the pressure minimum the boundary-

layer thickness for (vy)g = 0.0151 is only about 2 percent and the
boundary-layer thickness for (vW)S = 0.0515 only about 5 percent

greater than for (vw)B = 0., Thus, the only effect making transition -

less likely is the increased boundary-layer thickness and this increased
thickness is present over only the foremost portion of the airfoil.

The results of the computations for the NACA 642A015 airfoil are

shown in figure 9. The behavior of the curves in figure 9(a) confirms  ~~ _—
the prediction of figure 6. The variation of v, along x for
(vy)g = 0.0111 and for (vy)g = 0.0380 are shown in figure 9(c) for

the region where wy >0. TFigures 9(b), 9(d), and 9(e) contain the
variation of Rg and of Rg, with x for (w)g =0, (w)g = 0.011L

and (vy)g = 0.0380, respectively. In figure 9(f) is shown the distri-
bution of RGC/RG along x for the three distributions of (vy)g

along x. Figure 9(g) contains the ratios of boundary-layer thicknesses
with blowing to those without blowing., There are ggain two main results.
For the NACA 64oA015 airfoil the ratio RGC/RG is greater for (wy)g >0

than for (vy)g = O for values of x between gbout 0.065 and 0.30

(fig. 9(f)). The ratio .of boundary-layer thickness with blowing to
that without blowing (fig. 9(g)) shows the same behavior as for the
NACA 64A010 airfoil.

The chosen distribution of blowing has thus shown & greater effect
in reducing the likelihood of transition on the NACA 64oA01l5 airfoil L

than on the NACA 6LAOLO airfoil. On the NACA 64oA015 airfoil the chosen

distribution of blowing has, in addition to the increase in boundary-
layer thickness, also produced an increase in stability that is notice-
able to about x = 0.30.

Power required for blowing.- The power required for blowing is

p- 28

EB

where @ 1s the volume of fluid blown out per second, AH is the total
oressure added to the fluid by a system within the aircraft, eand Ep is
the efficiency of the entire boundary-layer codtrol system.

The quantity -Q AH  is obtalned by integrating Vw AH around the
entire airfoil surface; thus

RN
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Expressed as a drag coefficient, the power required for boundary-layer
control is:

5
|
|
|

o 11

where Ep is the effitiency of the aircraft propulsive system. Then,

(19)

CDP ='§£ Vig é& dx
EB 45

If no fluild originates or is retained in tﬁe aircraft, the total drag
coefficlent is ' ' '

CD%—z 2<E> +—EE V. %% dx

where 2(%) is the wake drag coefficient OFf the airfoil (reference 15).

C
[

The expression for CDP (equation (19)) can also be written as

CDP = Eg %) %Vw dx (20)

where <%E> is an average pressure lcss defined by
%o /p
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Now

Therefore

The values of Cq for the NACA 64AO1O and NACA 64,A0L5 airfoils are,
for o = 0° and Rg = 107, '

Airfoil (vw)s Cq
NACA 6LAOQLO0 O‘géié O'ggggg
wos Gigaons | O3 | 9008

Because of the small values of Cg, the drag coefficlent CDP will be

appreciable only when the factor — ——> is a multiple of unity.
m

Bp [AH

Ep\g,
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DISCUSSION

The present analysis uses two approximate methods, namely,
Schlichting's method (reference 11) and Lin's approximate formuls
(reference 12). The tests of the Schlichting method in reference 1l
and the test in appendix B for blowing near the stagnatlon point give
no reason to doubt that the Schlichting method correctly predicts the
response of the boundary layer to changes in the variables that affect
its behavior, namely, pressure gradient, Reynolds number, blowing, and
8o forth. .The accuracy of the prediction, however, 1s known to depend
on the particular case (see reference 11),

Reference 17 investigated the approximaete Lin formula and concluded
that the predicted critical Reynolds numbers agree well with those
predicted by more elaborate calculations. Although the Lin formula
has good accuracy, the exact prediction of thecritical Reynolds number
of a velocity profile requires a precise knowledge of the first and sec-
ond derivatives of the velocity profile u = u(y). It therefore seems
likely that the main uncertainty in the predictions of RQC/RQ by the

combined Schlichting and Lin methods lies in the Schlichting method which
assumes that all veloclty profiles form the particular single-parameter
family given by equation (Al), appendix A.

In splte of the inexactrmess of the methods of analysis the result
that an increase in boundary-layer thickness can lncrease the stability
of--the laminar boundary layer under the proper conditions is believed
valid. It therefore follows that thinning the boundary layer will not—
always increase the boundary-layer stability. The present analysis,
however, does not predict the effects obtained by placing slots on a
surface (references 7, 8, and 9) because this investigation treats the
effect of a change in boundary-layer thickness alone and slots change
not only the boundary-layer thickness but alsc, by their sink effect
(reference 9), change the pressure distribution in their vicinity and,
by introducing stagnation points, can produce convex velocity profiles
on their downstream sides.

It is noted that—the pressure drop along the surface required to
make any thickening of the boundary layer result in an increase in sta-
bility is not very large. For example, the NACA 6&2A015 airfoil at

a =0° has a large enough pressure drop over the forward 22% percentm
of the surface to make any increase in boundary-layer thickness increase

the stability. -

The result that the effective helght of surface irregularities can
be decreased by an increase 1n boundary-layer thickness without a decrease
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in stability and the fact that the consistent attainment of leminsr flow
in flight is prevented by surface irregularities makes it important to
find a method that can increase the boundary-lsyer thickness without
itself causing transition.

In the present work an Investigation was made of the feasibility
of Increasing boundary-layer thicknesses by blowlng over the foremost
portion of an airfoil. In order to make the effects clear, large
blowing vg}og}ties at the stagnation point were chosen. In order for
the Von Karman momentum equation to be valid, however, it is necessary

that v, be Of the order of —— or that U =~(%¥> X. That is,

VRC 8
either the boundary-layer-theory assumptions must be satisfied or (see
appendix C) the flow must be a stagnation-point flow. For definiteness,

it is assumed that v, must be less than —lg; at Rq = 107, vy must

e

thus be less than 0.003 if U # (%%) X.
8

For the NACA 64AQLO airfoil U = 17h.Tx to .about x = 0.003 with
less than lO-percent error; thus the stagnation-point flow extends to
about x = 0.003. In this region large values of wv; do not invalidate

the Von Kérman momentum equation; therefore the Schlichting method
remgins vallid for large v, for x less than about 0.003. For

(vy)g = 0.0151 however, v, >0.003 for values of x between 0.003
end 0.011 (fig. 8(c)) and for (w,;)g = 0.0515, v,; > 0.003 .for values

of x between 0.003 and 0.012 (fig. 8(c)). Therefore in the region
lying roughly between x = 0,003 and x = 0.012 and gbout 0.0l in
length, the values of v are large enough to introduce an additional

uncertainty into the predictions of the calculations for the NACA
64A010 airfoil. A similar region exists between x = 0.007 and
x = 0.015 for (vw)s = 0.0111 (fig. 9(c)) and between x = 0.007 and

x = 0.020 for (vw)s 0.0380 (fig. 9(c)) on the NACA 64,A015 airfoil.

The region in which the Schlichting method is probably invalld grows
with an increase in (v,)g 8o that it is inadvisable to make calcula-

tions for larger values of (vW)B on the NACA 64A010 and NACA 6LoA015
airfoils at « = 0° and R. = 107.

Although the blowing velocities were so large that the boundary-
layer assumptions were probably violated in a small area at the end of
the stagnation-point-flow region, the boundary-layer thickness was
increaged significantly over only the foremost portion of the airfoils.
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Whether larger blowing velocities can appreclably increase the boundary-
layer thickness over larger portlons of the surface than found in the
present work must therefore be determined experimentally.

CONCLUDING REMARKS

In order to investigate the possibility that an increase in
boundary-layer thickness could increase the local critical Reymolds
number more than the local boundary-layer Reynolds number, computatlons
have been made by combining the Schlichting method with the Lin method
for the calculation of the critical Reynolds number of a velocity pro-
file. The computations indicate that in a region of falling pressure
on an impervious surface an increase in boundary-layer thickness can
cause the velocity profile shape to be changed enough by the increase
in effective pressure gradlent so that the ratio of the local critical
Reynolds number to the local boundary-layer Reynolds number is increased.
It thus appears that—the local stabllity of the boundary layer can be
increased by a local increase 1n boundary-layer thickness. ThHe compu-
tations also indicate that similar effects octur when there 1s flow
through the surface; in this case the results depend on the effective

These calculations suggest that an increase in boundary -layer thick-

ness can decrease the disturbing effect of roughness particles without a -

decrease in stability. This conclusion is implied by the result that an
increase in boundary-layer thickness reduces the velocity at a fixed dis-
tance from the surface more than the change in veloclty profile increases
the velocity. One method of increasing the boundary-layer thickness,
namely, blowing near the stagnation point, has been investigated theo-
retically and seemp to have limited potentialities because the blowing.
produces a significant increase in boundary-layer thickness only over

the foremost portion of the airfoil.

Langley Aeronsutical Leboratory
Natlonal Advisory Committee for Aeronautics
Langley Field, Va., March 19, 1952

il
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APPENDIX A
MODIFICATION OF THE SCHLICHTING METHOD

The Schlichting method assumes that all velocity profiles of the
laminar boundary layer form the single-parameter family

(A1)

5 = Fi(n) + KFy(n) 5 n =

where K is the velocity-profile shape parameter. The functions Fl
and F, are (see reference 11):

and
F2=F1-sin(g-n) (0<n =3)
F2=-e_n _ (T] .—?3)

The function F; represents the asymptotic suction profile (reference 11)

and the term sin.(g n) represents an approximastion to the Blasius pro-

file for the flat plate (K = -1). With this relation for the velocity
profile, Schlichting uses the momentum equation in the form

<1|S
G 1%
+
<
o
*)
S—
@|
N
&
I
o
i?|
o)
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By introducing the substitutions

and

where Z = GERC; the momentum equation can be writiten as

a _ G(k,kl)i o (12)
ax U

where

G(k,kl)=2E-k(2 +§f>- k:ZI (A3)

The terms f and 8*/6 are functions of the parameter K which is a
function of k and kj. ' — L

In order to compute the properties of the boundary layer, equa-
tion (A2) is integrated step by step to f£ind Z{x); therefore, G(k,ky)
must be found at each step. Schlichting gives a plot of G{(k,k1); the
computation of Z(x) therefore is made by using equation (A2), the
definitions of k and ki, and the plot of G(k,k;) (fig. 6 of
reference 11). When any property of the shepe of the velocity profiles
is needed, the distribution of the shape parameter X(x) must also be
found. The parameter K, however, is given by Schlichting not as a "
function of k and ki but as a function of A and Ajy; thus
(equation (14) of_reference 11)
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X+>\.l-l
K = - (AL)
1 - A1 -~ =
1( 6)
where
5" =
p o
vV o dax
and
Vid1
X:L:- '_
v

In order to find K(x), it i1s therefore first necessary to find
AMx) end M(x) from k(x) and ki(x), the quantities available from

the computation of Z. The computed distributions k(x) and kj(x)
are converted to A(x) and A(x) by two sets of curves, one, values
of A agaeinst k for constant values of kj, the other, values of A3
against k for constant values of k. The distribution of the shape

parameter K(x) is then found from a plot of equation (Ak) (fig. 3 of
reference 11).

In the present investigation, properties of the boundary layer on
an airfoil with blowing (vw-> O) had to be calculated. Because the
curves given in reference 11 for use in calculations are confined to
vw‘§ 0, it was necessary to extend them to vy >0. In doing this it
was found that the curves of A(k,k;) and Ai(k,k1) could be elimi-
nated and the extension of the Schlichting method to wvy > 0, simplified.
The quantities A and A} then do not appear in a computation; K is

found directly from k and kj.
The quantities A and A} are eliminested by solving equation (22)

of reference 11 for A and equation (23) of reference 11 for Ay to
obtain

k
A= A
P (45)
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and

A o= 51 (A6)
g

where g = g(K) == When equations (A5) and (A6) are used with equa-
1 .
tion (A4) the result is

ge(K+l)-g|E+< -%);Jkl-k“’ : (A7)

Equation (20) of reference 11, however, is

ofe (-9 - 200

Therefore, equation (A7) becomes:
gE(K +1) - fk; -k =0 (A8)

a relation between K, k, and kf. The function K(k,kl), shown in
figures 4(a) and 4(b), was calculated by fixing k; and calculating k

for -2.099 SXK< 0 from equation (A8). The functions g(K) and £(K)
are given in reference 11.

The curves of G(k,k;) given by Schlichting (fig. 6 of reference 11)
can thus be extended to negative values of ki (that is vy > O) by the

use of equation (A3), figure L, and the values of f(K), g(X), and
8*/9(K) given in table 2 of reference 11. In the present work, how-
ever, because of the large range of k and k3, it was more convenient
to compute G(k,k;) at every step in x by using figures 4(a) and 4(b)

*
and curves of f(K), g(K), and %; ().

In order to integrate equation (A2), the value of Z at x + AX
was found by the formula:

(0)
a7z
yapx = Zx * (E;)x JAvS
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0 0
The value of Z§+gx was used to find 4z (0) . A new value of Zyiay
( Ax /x4 Ax

1
called Zx%ix wag then found from:

L e e ) o (@)

This process was repeated elther until there was no change between

(2) (2)
successive values of (9%) or to (E§> . When (9&) was
A% /x+Ax dx

X+ X+AX
(1) (2)
not equal to (9%) the step length was reduced. When (Q%)
X+AX X+AX
1
was equal to <9§>( ) the step length was not changed. When (%é>(l)
A% /x+Ax X+AX
az\(0) :
was equal to [(— the step length was increased. In no case was
AX /xiAx

a value of Ax larger than 0,05 used.

In order to begin a computstion at the stagnation point, it is
necessary to find the values of k and kj there. The requirement

that %% remain finite at the stagnation point (U = O) means that

G(k,k1) = 0 (equation A2). The values of k and k; at the stagna-
tion point therefore satisfy the equation

£ - k(? * gf> -k =0 (A9)

The varisbles f and 8%/6 are functions of K only. Equation (A9)
contains three variables, k, k;, and K. In order to find another

relation between k, ki, and X, equation (A8) is used. There are then
two equatlons in the two unknowns k and ky:

f-k(2+'é—'>-kl=o
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and
g2(K + 1) -k - fky = O

The solution is

_ ° - g2 (K + l)

S *
(2 + g—)f -1

(A10)

and

] (K + 1)(2 + gf> - f

*
s (2 + %—)f -1

(A11)

Equations (A10) and (All) give the values of k and ky at the stagna-
tion point as functions of K, Because K at the stagnation point is
usually unknown, it is better to have k sand ki, as functions of
known quantities. Schlichting (reference 11) introduces a quantity Co

defined as:
k
Co = (—l')
Vi /s
By writing ki as
Vi
kq = - =
1=-7 %

and k as
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the expression

-~ Vv \[R_c

[au
dx /s
U

is obtained. The gquantities (vy)g, Rc, and (33?) are usually known.
s

Co=

The connection between kg, kj , Xg, and C, 18 shown in figure 12.

Although equation (A2) leads to

&1&
ojo

at the stagnation point, an application of L'Hospital's Rule results in o

a definite expression for (%) 3 1t is
8

% an x|
(dZ ax2 3k ax dk1

)s_ au aG> £1 G
;a_z(l'a; T 2VE B s

For all computations in the present work (%) = 0 because for a
s

2,0
symmetrical airfoil at zero angle of attack <d_[21) = 0 &and becaguse in
dx=/s

afy
the present work |——} = 0.
dx /s
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APPENDIX B

FLOW AT THE STAGNATION POINT FOR LARGE BLOWING QUANTITIES

At the stagnation point the requirement that %% remains finite

although U = O means that G(k,k;) = O at the stagnation point.
The expression for G(k,kj) is

*
G(k,kq) =2f-k(2+%—)- 1 (B1)
Therefore, at the stagnation point,
&%
£f-kg+>=)-k =0 (B2)
Now divide by kj; the result is

f  k 8*> _
k_l.-g(e+3_-1_o (B3)

For the stagnation-point flow, k is positive. The maximum

*
value that f can ever have is 0.5; the maximum value of %r is Lk.6L.

Therefore, when ki becomes very large and negative, equation (B3)
becomes

k -1
= = (BY)

i)
no
+
[o/]
*

The equation relating K, k, and k; also must apply; it is

g2(K +1) -k - fky =0 (B5)

's
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Now divide by kj; the result is

ek +1) k

o ) -f£=0 (B6)

the maximum value of g=(K + 1) is 0.25; therefore, when kj; becomes
very large and negative, equation (B6) becomes

N S
= t (BT)

Therefore, for G = 0, k becomes large and positive as kj becomes

large and negative. If equations (BY4) and (B7) are combined, the result
is

f(? + %i> -1=0 (B8)

Now (reference 11)

i (- %—)K] (oo + eak + cax?)

s _ 1- (- S

6 Co + c3jK + c2K2

and (reference 11)

Equation (B8) is then

E_ + (1 - %)K‘J[e(co + ciK + c2K2) +1 - (2 - %)K:‘ -1=0 (B9)

By substituting the values (reference 11)

cl -Co =2 = %
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it-cen be shown by trial that K = -1 1is a rootof equation (B9).
The other two roots sre found to be

K = -4.95

and

Because both are outside the permissible range of K (-2.099 < K< 0),
K = -1 1is the only valid root of equation (B8). Therefore, for a
stagnation-point flow with very large positive wv; the velocity profile

becomes the Schlichting flat-plate profile

- sin(% n) (B10)

cie

The relation between K, k, and k; at the stagnation point
for all values of Xkj is given by equations (A10) and (All) and is
shown in figures U4 and 12. By use of equations (A10) and (All), it
can be shown that k-9 0, k31— 0.5, énd K->0 as Co—p~ and that
k 2», kj—)-», and K9 -1 as Co— -». From these results and
figures 4 and 12 it is clear that for a stagnation-point flow -1 <K
Therefore, the value of Rg, for a stagnation-point flow is always
greater than 228 (see fig. 1) and the velocity profile never has an
inflection point for y > 0; veloclity profiles for K > -1 have no
inflection peoint for y > 0. -

A
(@]

The velocity profile predicted by the Schlichting method for a
stagnation-point flow with large positive vy, namely, equation (B10)
is now shown to be an exact solution of the Navier-Stokes equations.
The work of reference 15 has shown that the exact solution of the
Navier-Stokes equations for a stagnation-point flow with large positive
Vi is

- du
= sin (-‘%‘ E.X-)

e

The variable 1 1is

A
"= g
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or
__yzfl>9 i
T]_de.X Sle_dll
dx

From the definitions of k and k; 1t follows that

kl _ Vu
X . dU
g —

dx

In the 1imit for large vww (large ki), however, (see equation (Bk))
k *
—l = - (2 + g—)
k e

Therefore

¥*
0 = LQ)G_(2+§_)
Now, from equation (17) of reference 11,

éi = Cq *+ clK + c2K2

and from equation (19) of reference 11

)
i=l-(2-;K
Co + c3K + c2K2

Therefore

43
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In the limit as w; gets large and positive, K = -1; therefore,
* 6
%(2+%)=2c0-2(c1-c2)+l-l|-(2--;>

but, from reference 11,

and - . _

Cl-C2=2"

Therefore,

TN

and in the limit -—

Thus equation (B1l0) becomes

= sin QL-QQ

als

The Schlichting method. therefore predicts the correct velocity
profile for the stagnation-point flow for Yarge blowing. Note, however,
that the Schlichting method is incorrect in Predicting that the velocity
profile is the same as the flat-plate profile without blowing.

A comparisonm of the velocity profiles predicted by the approximate
Schlichting method (reference 11) with some exact—solutions of the
boundary-layer equations for large vy in s stagnation-point flow
(reference 18) is shown in figure 13. The éxact-solutions of the

boundary-layer equations for a stagnation-point flow are also solutions
of the Navier-Stokes equations (reference 19, p. 82).
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APPENDIX C

/ /
VON KARMAN MOMENTUM EQUATION FOR STAGNATION-POINT FLOW

The stagnation-point flow, the flow in the region in which
U= (%g) X, can be described by the Navier-Stokes equations in
s
nondimensional form; the equatlions are

2 2
uiu_'+véli=-a_-p+_l_-—li+a_l_l. (Cl)
ox o ox Re¢ <2 aye
2 N2
=\ P N [~ QU= ¢ (c2)
ox dy dy Re %2 By2

The stream function for an inviscid stagnation-point flow with

v % O at y=0 1is
¥ = axy - bx

(see reference 19 for the case b = 0) where

V=L
Uoc

B.=__a
Uo/T

and
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The velocity components are U = ax and V' = -ay + b. By Bernoulli's
theorem, the static pressure is .

-5 30 7)< ma - 5[ 02 - oYy - (]

For a viscous fluid the expression for the stream function is generalized
o pil .

¥ = xf(y) - bx

and the expression for the static pressure, to

2
b = g - & [2 + F(y,0)] (c3)

The velocity components are

QY a¢ )
"%
f (ch)
v = - §ﬁ¥== =0 +
ox ‘ bv

The velocity components at 'y =0 are u=¢0 and v =D>; at y = o
the x velocity component is the same as that for the inviscid fluid;
that is

u=U=ax (c5)

Tt will now be shown that the Von Karmén momentum equation results if
equation (Cl) is integrated with respect to y. From equations (Ck)
and the fact that the use of equations (CL4) leeds to a solution of—the
stagnation-point flow with blowing (references 15 and 18), it follows
that '
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Equation (Cl) thus becomes

p @, %, 1

Ox dy 3 Re dy2

Now integrate equation (C6) with respect to y; thus,

1 1 1 1
f ua_ud_y+f va_udy=.. _a_de_*_i-_ ﬁdy
0 aX 0 aX -

dy 0 Redop 9y2

where 1 1s a constant such that, for y > 1, u=U = ax.

By integration by parts it follows that

1 I
U/‘ v éE dy = vé] -\/P u éﬁ dy
o Oy 0 o Oy

But
y
v = %1 dy + vy,
0 y
and, by continuity,
ov _ _du
oy ox

therefore,

sz v Su dy = -U'JFZ QE dy + Uv, + d/i ou d
0 dy 0 Oox Y v 0 “ ox 4

Equation (CT7) becomes

1 2 p Z
duP dy - U‘]F éE.dy + Uvy, =._‘]F ) dy + l_ii%
o o ox 0

k7

(c6)

(c7)

(c8)
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From equation (C3), S = .-a%x; ™ is thus independent of y. By
X X
use of U = ax, %2 can also be written as-
X
dp: au
== U= (c9)
ox dx '
L ouy
Equation (C8), after equation (C9) has been substitiuted and JF w dy
0 X

added and subtracted, is

ax OBX
i a [ 103
Uf _Edy-U—f dy+va=—R——u) (c10)
o ox dx Jq c\9y /g
where Su =0 for y =2 1. After collecting perms apd using

1 (ég) _ e
Re \Oy — =2
C W poU

0

equation (C10) becomes

a2 L u u au ! u | ;ﬁ
EU \_/(\) -[T( -ﬁ)dy +UE_X— 0 <l -._ﬁ>dY'VwU=__2

But
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and

Near the stagnation point <;here U= (%g) :; the Von Ké}méh
AAX/

momentum equation is therefore obtainable directly from the Navier-Stokes
equations of motion and is thus vallid there even for large vy. The

Schlichting method is therefore not invalidated by the presence of
large Vv,; 1in a stagnation-point flow.
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TABLE I.- SUPPFLEMENTARY IRFORMATION FOR CUBVES OF FIGUEES 2 AND 5

{a) Values of J and related inforwation

Yalue of J

8ign of root In

Range of kl Ran,ge of K equa.tiun (6)
Figures 2(a) and S5({a), ;> 0

1 10* Aot < K © 38 £2.06B< K< 0O .

2 10 “10.48 <K € -LOTL -LB6L<SKg O +

3 1 ~1.366 € X3 < -0.1869 -1.11L<EKES 0 +

& .1 -0.2791 < ky < ~0.02113 ~L013g KGO +

5 .001 -0,02287 < ky g -0-0002145 -1.00013$ K5 © +

6 -.001 001225k S0 -1k sKg -1 -

7 -1 0.120Tgk g C -2.018< X< 1 -

8 -1 0.385Kk 50 2.09¢Kg -1 -

9 =10 -L20gk <0 20099 Kg -1 -

10 10t 385K S0 -2.099 S K% -1 -

11 10t -3§<k S0 2,068 Kg -1 -

12 10 “LOTLEK S0 -LhlsKg -1 .
13 1 0.1869S k) SO LLLEKS -1 - )

Figures 2(b) and 5(b), ¥ <O

1 0.00L 0S¥k §0.02187 -1$K%50

2 1 0gk g0.1792 “1<E<SO

3 L 05K 0.3660 ~_lEKg0 -

I 10 02k £ 0.0 -18KS0 -

5 10+ 0< K S 0.5000 -1€XS50 -

6 -10% 0 Sk £ 0.5000 15x%o0 -

7 -10 0% Xk < 0.58 Al€k< o0 -

8 -1 0 € X € 0.2639 -1€ K< -0 8120 -

9 -1 0,2639 § X; S 0.h6%2 -1.386 € X T -0.8120 +

10 -1 0.0218 € &y § 0.2277 -LT8 S K -0.9859. +

1 -.001 0.0002147 € ky € 0.0123 -L9g6$KS -0.9999 +

36

2ele NI VOWN




NACA TN 2752 | 33

TABLE I.- SUPFLEMENTARY INFORMATION FOR CURVES OF FIGURES 2 AND 5 - Concluded

(v) Information for extreme vaiues of X

Py

R
1 b -3 Condition
Curve x X Ry < limiting K
(a)
Figures 2(z) and 5(a), v >0
1 0 10t 0.002 —
-2.068 -38 [+] A
2 0 -10.48 1.909 ——
~L.k61 -L0oT. .0356 A
3 0 -1.366 %6 —
-1,111 -.1869 .00 A
% 0 -.2791 T1.60 —
~1.013 -.02113 0.2 A
5 0 -.02287 875 -—
<1.00013 -.00021k5 1,063
I3 -1 o] = -—
~1.92k -.0122 246 B
7 -1 0 - —
-2.018 -.1207 .00T5 B
8 -l L] —
~2.099 -.38 0 —
-1 (o] - ———
9 -2.095 -L.20 0 —
-l 0] « —
1o -2.099 -38 0 —
-1 o . —
un -2.068 -38 0 A
12 -1 0 © —
-1.461 ~1.071 .0356 A
=1 0 3 ———
B -1.111 -.1869 .700 A
Figures 2(b) and 5(b), W%, <0
1 0 0.02187 -91k.5 —
-1 0 - —
2 0 L1791 ~111.7 —
-1 [s] - -—
3 o] .366L -5%.63 —
-1 0 - —
" [o] 770 -1,93 —
-1 [+] ) —
0 . 5000 -40.000 —
5 -1 o - —
6 0 . 5000 -0, 000 —
-1 o] - —
7 ] . 5280 -37.88 —
-1 o] © -—
8 -.8120 .2639 -3.20 A
-1 0 - —
9 -.8120 .2639 ~3.20 A
-1.346 a652 -.120 B
10 -.98%9 .0218 15 A
-1.78% 1277 -.076T 3
1 -.9999 0002147 -1.080 A
-1.926 .0123 -.102 B
K+ 1
Scomattion A: 1+ 2Z2E* D) o contition B: Ky = . .ﬂ&:
£2J ar/ak .
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(a) vy > 0.
Rec
Figure 2,- Variation of boundary-layer-stability parameter o with

velocity-profile shape parameter K for fixed values of boundary-
layer-control parameter J (see table I for values of J). The
dashed line is the limiting curve (see equation (9)).
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parameter K.
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thickness, for fixed values of boundary-layer-control parameter J
(see table I for values of J).
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face at the atagnatiocn point to free-stream velocity,

Figure 8.~ Calculations for NACA 64AOLO airfoil.

A5

79

2Cle NI YOVN




3,000
o 2,000 \
Heo \ "RB 1] _—-—d’-_‘—_—‘—
© 000 L AR
———
P
PO
\\ /./— ﬂneg :NACA; 1
/ rd ‘V"
0 1 }
o .05 .10 .15 .20 .25 . 30 .35 . A5 50
X

(b) Variation of boundary-layer Reynolds number Ry and critical boundary-layer Reynolds number B‘9c:
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(c) Variation of vy Tratlo of velocity through surface to free-stream velocity, with position x
along surface for the NACA 644010 airfoil section at zero angle of attack, a chord Reynolds number
of 107, and two values of (vy),;, value of +v; at stagnation polnt. For (Vw)s = 0.0515,

0.0k o.oﬁ
[ vy dx = 0.000287 and v, =0 at x = 0.0k4; for (v,)g = 0.0151, d[\ Vy dx = 0.000129
v 0
and vy =0 at x = 0,04,

Figure 8,- Continued.
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Figure 8.- Continued.

89

26l2 NI VOVN




]
\
1Lk ] 4
{--/ll"—("')'i - 0.|0515 & \
i 1 ! 1
L P a = 0.0152 \
1.2j ] 1 no i
! I {Vw)a = O
‘ ‘/—(W)! = C
\

-
Roq 0 .01 .02 .03 Lok
Ro A

+6 \\ g = 0

Q\\\ A v, = 0.0151
N
A R~
S 1 s "™ o
(vw)g = 0?15-‘7—:' L
-E \ s S e
-5
-—-.J
° .08 ~10 215 .20 .25 .30 .35 1o T3 .50

(f) variation of the ratio of critical boundary-layer Reynclds number Rg. to boundary-layer Reynolds
number Rgp with position x along the surface for the NACA 64A010 airfoil section at a chord

Reynolds number of 107, zero angle of attack, and fixed wvalues of (Vw)s » the ratio of wvelocity

through the surface at the stagnation point to the free-stream velocity.

Figure 8.- Continued.
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Figure 8.- Corncluded.
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face at stagnation point to free-stream velocity.
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Figure 9.~ Calculations for NACA 64,4015 sirfoil.
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(b) Variation of boundary-layer Reynolds nmumber Rg and critical boundary-layer Reynolds number Roe
with position x along surface for the NACA 64pAOL5 airfoil section for no flow through surface
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{Vvqy = 0), a chord Reynolds number of 10!, and zero angle of attack.
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(c) Variation of Vy, ratio of velocity through surface to free-stream velocity, with position x
along surface for NACA 6h2A015 airfoll section at zero angle of attack, a chord Reynolds number

of 107, and two values of (vw)B, value of v, at stagnation point. For (vw)B = 0,0380,

0.095 0.075 ‘

f vy dx = 0,000354 and vy = 0 at x = 0.095; for (vy), = 0.0111, f vy dx = 0,000157
0 0

and vy =0 at x = 0,075.

Figure 9.~ Continued.
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(d) Variation of boundary-layer Reynolds numbexr Rg eand criticel boundary-layer Reynolds number Rac
~with position x along surface for NACA 6LoAOLlS airfoil section for (vw)s, the ratio of velocity

through the surface, at the stagnation point to the free-stream velocity, equal to 0.01l1l, a chord
Reynolds number of 107, and zero angle of attack.
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voundary-lieyer Reynolds number Rg and critical boundary-layer Reynolds number RGC
with position x along surface for NACA 64pAO0Ll5 airfoil section for (vy)g, ratio of velocity
through surface at stagnation point to free-stream velocity, equal to 0.0380, a chord Reynolds
mmber of 107, and zero angle of attack. L
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Figure 9.- Continued.
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(f) Variation of ratic of critical boundery-layer Reynolds number RBC to boundary-layer Reynolds
number Rg with position x along surface for NACA 64pACL5 alrfoil section at a chokd Reynolds

number of 107, zero angle of attack, and fixed values of (vw)s » ratio of velocity through the
surface at stegnation point to free-stream velocity.

Figure 9.- Continued.
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(g) Variation with position x along surface of ratio of boundary-layer thickness with blowing to
(Re)v,>0
thickness without blowing ———— for NACA 64oa01l5 airfoil section at a chord Reynolds number
(RG)szo
of lOT, zero angle of attack, and fixed values of (Vw)B: retio of velocity through surface at
stagnation point to free-stream velocity. -
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Figure 9.- Concluded.
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Figure 10.- Velocity distributicn, U against x, for the NACA 642010
airfoil section at a« = 0°,
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Figure 11.- Velocity distribution, U against x, for the NACA 6454015
airfoil section at a = 0°,
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Figure 12.- Varlation at stagnation point—uf velocity-profile shape
parameter K, pressure-gradient parameter k, and parameter of flow
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(b) Blowing. Co = =3.1905.

Figure 13,- Continued.



NACA TN 2752 83

1.0

2

!
Exact— /

(=T~
wn
¢

4

NACA |

% I ] 1.2 1.6 2,0, 2.k 2.8 3.2 3.6 5,0

(c) Blowing. C, = =k.33L46,

Figure 13.- Concluded.
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